
UNIX Sockets

Socket and Process Communication

The interface that the OS provides to its networking subsystem

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

OS network

stack

User Process User Process

Socket

OS network

stack

Socket

Internet

Internet

Internet

2

Delivering the Data: Division of Labor

• Network

– Deliver data packet to the destination host

– Based on the destination IP address

• Operating system

– Deliver data to the destination socket

– Based on the destination port number (e.g., 80)

• Application

– Read data from and write data to the socket

– Interpret the data (e.g., render a Web page)

3

Socket: End Point of Communication

• Sending message from one process to another
– Message must traverse the underlying network

• Process sends and receives through a “socket”
– In essence, the doorway leading in/out of the house

• Socket as an Application Programming Interface
– Supports the creation of network applications

4

socket socket

User process User process

Operating
System

Operating
System

Two Types of Application Processes
Communication

• Datagram Socket (UDP)

– Collection of messages

– Best effort

– Connectionless

• Stream Socket (TCP)

– Stream of bytes

– Reliable

– Connection-oriented

5

User Datagram Protocol (UDP):
Datagram Socket

Postal Mail
• Single mailbox to receive

messages

• Unreliable

• Not necessarily in-order
delivery

• Each letter is independent

• Must address each reply

Example UDP applications

Multimedia, voice over IP (Skype)

UDP
• Single socket to receive messages

• No guarantee of delivery

• Not necessarily in-order delivery

• Datagram – independent packets

• Must address each packet

Postal Mail
• Single mailbox to receive letters

• Unreliable

• Not necessarily in-order delivery

• Letters sent independently

• Must address each mail

6

Transmission Control Protocol (TCP):
Stream Socket

Postal Mail
• Single mailbox to receive

messages

• Unreliable

• Not necessarily in-order
delivery

• Each letter is independent

• Must address each reply

Example TCP applications

Web, Email, Telnet

TCP
• Reliable – guarantee delivery

• Byte stream – in-order delivery

• Connection-oriented – single
socket per connection

• Setup connection followed by
data transfer

Telephone Call
• Guaranteed delivery

• In-order delivery

• Connection-oriented

• Setup connection followed by
conversation

7

Socket Identification

• Communication Protocol

– TCP (Stream Socket): streaming, reliable

– UDP (Datagram Socket): packets, best effort

• Receiving host

– Destination address that uniquely identifies the host

– An IP address is a 32-bit quantity

• Receiving socket

– Host may be running many different processes

– Destination port that uniquely identifies the socket

– A port number is a 16-bit quantity

8

Socket Identification (Cont.)

TCP/UDP

IP

Ethernet Adapter

Process

A

Process

B

port X port Y

Host Address

Protocol

Port Number

9

Clients and Servers

• Client program
– Running on end host

– Requests service

– E.g., Web browser

• Server program
– Running on end host

– Provides service

– E.g., Web server

10

GET /index.html

“Site under construction”

Client-Server Communication

• Client “sometimes on”

– Initiates a request to the
server when interested

– E.g., Web browser on your
laptop or cell phone

– Doesn’t communicate
directly with other clients

– Needs to know server’s
address

• Server is “always on”

– Handles services requests
from many client hosts

– E.g., Web server for the
www.cnn.com Web site

– Doesn’t initiate contact with
the clients

– Needs fixed, known address

11

http://www.cnn.com/

Client and Server Processes

• Client process
– process that initiates communication

• Server Process
– process that waits to be contacted

12

Knowing What Port Number To Use

• Popular applications have well-known ports

– E.g., port 80 for Web and port 25 for e-mail

– See http://www.iana.org/assignments/port-numbers

• Well-known vs. ephemeral ports

– Server has a well-known port (e.g., port 80)
• Between 0 and 1023 (requires root to use)

– Client picks an unused ephemeral (i.e., temporary) port
• Between 1024 and 65535

• Uniquely identifying traffic between the hosts

– Two IP addresses and two port numbers

– Underlying transport protocol (e.g., TCP or UDP)

13

http://www.iana.org/assignments/port-numbers

Using Ports to Identify Services

14

Web server

(port 80)

Client host

Server host 128.2.194.242

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

Client-Server Communication
Stream Sockets (TCP): Connection-oriented

Create a socket

Bind the socket
(what port am I on?)

Listen for client
(Wait for incoming connections)

Accept connection

Receive Request

Send response

Server

Client

Create a socket

Connect to server

Send the request

Receive response
15

Client-Server Communication
Datagram Sockets (UDP): Connectionless

Create a socket

Bind the socket

Receive Request

Send response

Server
Client

Create a socket

Bind the socket

Send the request

Receive response

16

UNIX Socket API

• Socket interface
– Originally provided in Berkeley UNIX

– Later adopted by all popular operating systems

– Simplifies porting applications to different OSes

• In UNIX, everything is like a file
– All input is like reading a file

– All output is like writing a file

– File is represented by an integer file descriptor

• API implemented as system calls
– E.g., connect, send, recv, close, …

17

Connection-oriented Example
(Stream Sockets -TCP)

socket()

bind()

listen()

accept()

recv()

send()

Server

Client

socket()

connect()

send()

recv()
18

Connectionless Example
(Datagram Sockets - UDP)

socket()

bind()

recvfrom()

sendto()

Server
Client

socket()

bind()

sendto()

recvfrom()

19

Client: Learning Server Address/Port
• Server typically known by name and service

– E.g., “www.cnn.com” and “http”
• Need to translate into IP address and port #

– E.g., “64.236.16.20” and “80”

• Get address info with given host name and service
– int getaddrinfo(char *node,

char *service

struct addrinfo *hints,

struct addrinfo **result)

– *node: host name (e.g., “www.cnn.com”) or IP address
– *service: port number or service listed in /etc/services (e.g. ftp)
– hints: points to a struct addrinfo with known information

20

Client: Learning Server Address/Port (cont.)

• Data structure to host address information
struct addrinfo {

int ai_flags;

int ai_family;//e.g. AF_INET for IPv4

int ai_socketype; //e.g. SOCK_STREAM for TCP

int ai_protocol; //e.g. IPPROTO_TCP

size_t ai_addrlen;

char *ai_canonname;

struct sockaddr *ai_addr; // point to sockaddr struct

struct addrinfo *ai_next;

}

• Example
hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6

hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

int status = getaddrinfo("www.cnn.com", ”80", &hints, &result);

// result now points to a linked list of 1 or more addrinfos

// etc.

21

Client: Creating a Socket
• Creating a socket

– int socket(int domain, int type, int protocol)

– Returns a file descriptor (or handle) for the socket

• Domain: protocol family
– PF_INET for IPv4
– PF_INET6 for IPv6

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream (TCP)
– SOCK_DGRAM: message-oriented service (UDP)

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

• Example
sockfd = socket(result->ai_family,

result->ai_socktype,

result->ai_protocol);
22

Client: Connecting Socket to the Server
• Client contacts the server to establish connection

– Associate the socket with the server address/port

– Acquire a local port number (assigned by the OS)

– Request connection to server, who hopefully accepts

– connect is blocking

• Establishing the connection
– int connect(int sockfd,

struct sockaddr *server_address,

socketlen_t addrlen)

– Args: socket descriptor, server address, and address size

– Returns 0 on success, and -1 if an error occurs

– E.g. connect(sockfd,
result->ai_addr,

result->ai_addrlen); 23

Client: Sending Data

• Sending data
– int send(int sockfd, void *msg,

size_t len, int flags)

– Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

– Returns the number of bytes written, and -1 on error

– send is blocking: return only after data is sent

– Write short messages into a buffer and send once

24

Client: Receiving Data

• Receiving data
– int recv(int sockfd, void *buf,

size_t len, int flags)

– Arguments: socket descriptor, pointer to buffer to place
the data, size of the buffer

– Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

– Why do you need len? What happens if buf’s size < len?

– recv is blocking: return only after data is received

25

Server: Server Preparing its Socket
• Server creates a socket and binds address/port

– Server creates a socket, just like the client does
– Server associates the socket with the port number

• Create a socket
– int socket(int domain,

int type, int protocol)

• Bind socket to the local address and port number
– int bind(int sockfd,

struct sockaddr *my_addr,

socklen_t addrlen)

26

Server: Allowing Clients to Wait

• Many client requests may arrive
– Server cannot handle them all at the same time

– Server could reject the requests, or let them wait

• Define how many connections can be pending
– int listen(int sockfd, int backlog)

– Arguments: socket descriptor and acceptable backlog

– Returns a 0 on success, and -1 on error

– Listen is non-blocking: returns immediately

• What if too many clients arrive?
– Some requests don’t get through

– The Internet makes no promises…

– And the client can always try again
27

Server: Accepting Client Connection

• Now all the server can do is wait…
– Waits for connection request to arrive

– Blocking until the request arrives

– And then accepting the new request

• Accept a new connection from a client
– int accept(int sockfd,

struct sockaddr *addr,

socketlen_t *addrlen)

– Arguments: sockfd, structure that will provide client
address and port, and length of the structure

– Returns descriptor of socket for this new connection
28

Client and Server: Cleaning House

• Once the connection is open
– Both sides and read and write

– Two unidirectional streams of data

– In practice, client writes first, and server reads

– … then server writes, and client reads, and so on

• Closing down the connection
– Either side can close the connection

– … using the int close(int sockfd)

• What about the data still “in flight”
– Data in flight still reaches the other end

– So, server can close() before client finishes reading

29

Server: One Request at a Time?

• Serializing requests is inefficient

– Server can process just one request at a time

– All other clients must wait until previous one is done

– What makes this inefficient?

• May need to time share the server machine

– Alternate between servicing different requests

• Do a little work on one request, then switch when you are
waiting for some other resource (e.g., reading file from disk)

• “Nonblocking I/O”

– Or, use a different process/thread for each request

• Allow OS to share the CPU(s) across processes

– Or, some hybrid of these two approaches
30

Handle Multiple Clients using fork()

• Steps to handle multiple clients
– Go to a loop and accept connections using accept()

– After a connection is established, call fork() to create a
new child process to handle it

– Go back to listen for another socket in the parent process

– close() when you are done.

• Want to know more?

– Checkout out Beej's guide to network programming

31

Wanna See Real Clients and Servers?

• Apache Web server
– Open source server first released in 1995
– Name derives from “a patchy server” ;-)
– Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …
32

http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/

